4.5 Article

Differential clearance mechanisms, neutrophil extracellular trap degradation and phagocytosis, are operative in systemic lupus erythematosus patients with distinct autoantibody specificities

Journal

IMMUNOLOGY LETTERS
Volume 168, Issue 2, Pages 254-259

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.imlet.2015.09.016

Keywords

Systemic lupus erythematosus; Neutrophil extacellular trap; Phagocytosis; dsDNA; Extractable nuclear antigens; Autoantibodies

Categories

Funding

  1. Banaras Hindu University, Varanasi, India
  2. Indian Council of Medical Research, New Delhi, India

Ask authors/readers for more resources

Systemic lupus erythematosus (SLE) patients are generally presented with autoantibodies against either dsDNA or RNA-associated antigens (also known as extractable nuclear antigens, ENA) or both. However, the mechanisms and processes that lead to this distinctive autoantibody profile are not well understood. Defects in clearance mechanism i.e. phagocytosis may lead to enhanced microbial and cellular debris of immunogenic potential. In addition to defective phagocytosis, impaired neutrophil extracellular trap (NET) degradation has been recently reported in SLE patients. However, the extent to which both these clearance processes (NET-degradation and phagocytosis) are operative in serologically distinguished subsets of SLE patients is not established. Therefore, in this report, we evaluated NET-degradation and phagocytosis efficiency among SLE patients with different autoantibody specificities. SLE patients were classified into three subsets based on their autoantibody profile (anti-dsDNA, anti-ENA or both) as determined by ELISA. NET-degradation by SLE and control sera was assessed by sytox orange-based fluorescence assay. Neutrophil-mediated phagocytosis in the presence of SLE and control sera was determined by flowcytometry. The segregation of SLE patients revealed significant differences in NET-degradation and phagocytosis in SLE patients with autoantibodies against dsDNA and ENA. We report that NET-degradation efficiency was significantly impaired in SLE patients with anti-dsDNA autoantibodies and not in those with anti-ENA autoantibodies. In contrast to NET-degradation, neutrophil-mediated phagocytosis was impaired in all three subsets independent of autoantibody specificity. These observations suggest that varying clearance mechanisms are operative in SLE subsets with anti-dsDNA or anti-ENA autoantibodies. The results outlined in this manuscript also suggest that sub-grouping of SLE patients could be useful in delineating the molecular and pathological processes that are often missed when SLE patients are studied as a single group. Further, it will be imperative to propose that therapies targeted at improving NET clearance can be effective in anti-dsDNA(+) SLE patients. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available