4.8 Article

Probing Charge Transport of Ruthenium-Complex-Based Molecular Wires at the Single-Molecule Level

Journal

ACS NANO
Volume 2, Issue 11, Pages 2315-2323

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/nn800475a

Keywords

ruthenium-complex-enhanced charge transport; scanning tunneling microscopy; conductive probe-atomic force microscopy; technique-combination method; electronic decay constant; single molecular conductance; barrier height

Funding

  1. Natural Science Foundation of China [20225414]

Ask authors/readers for more resources

A ruthenium(II) bis(sigma-arylacetylide)-complex-based molecular wire functionalized with thiolacetyl alligator clips at both ends (OPERu) was used to fabricate gold substrate-molecular wire-conductive tip junctions. To elucidate the ruthenium-complex-enhanced charge transport, we conducted a single-molecule level investigation using the technique-combination method, where electronic delay constant, single-molecular conductance, and barrier height were obtained by scanning tunneling microscopy (STM) apparent height measurements, STM break junction measurements, and conductive probe-atomic force microscopy (CP-AFM) measurements, respectively. A quantitative comparison of OPERu with the well-studied pi-conjugated molecular wire oligo(1,4-phenylene ethynylene) (OPE) indicated that the lower electronic decay constant as well as the higher conductance of OPERu resulted from its lower band gap between the highest occupied molecular orbital (HOMO) and the gold Fermi level. The small offset of 0.25 eV was expected to be beneficial for the long-range charge transport of molecular wires. Moreover, the observed cross-platform agreement proved that this technique-combination method could serve as a benchmark for the detailed description of charge transport through molecular wires.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available