4.6 Article

Lipid Nanoparticles Improve Activity of Single-Stranded siRNA and Gapmer Antisense Oligonucleotides in Animals

Journal

ACS CHEMICAL BIOLOGY
Volume 8, Issue 7, Pages 1402-1406

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cb4001316

Keywords

-

Ask authors/readers for more resources

We evaluated the abilities of an antisense oligonucleotide (ASO), a small interfering RNA (siRNA), and a single-stranded siRNA (ss-siRNA) to inhibit expression from the PTEN gene in mice when formulated identically with lipid nanoparticles (LNPs). Significantly greater reductions in levels of PTEN mRNA were observed for LNP-formulated agents compared to unformulated drugs when gene silencing was evaluated after a single dose in the livers of mice. An unformulated ss-siRNA modified with a metabolically stable phosphate mimic 5'-(E)-vinylphosphonate showed dose-dependent reduction of PTEN mRNA in mice, albeit at doses significantly higher than those observed for formulated ss-siRNA. These results demonstrate that LNPs can be used to deliver functional antisense and ss-siRNA therapeutics to the liver, indicating that progress in the field of siRNA delivery is transferable to other classes of nucleic acid-based drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available