4.6 Article

A Liver-Selective LXR Inverse Agonist That Suppresses Hepatic Steatosis

Journal

ACS CHEMICAL BIOLOGY
Volume 8, Issue 3, Pages 559-567

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cb300541g

Keywords

-

Ask authors/readers for more resources

Fatty liver, which often accompanies obesity and type 2 diabetes, frequently leads to a much more debilitating hepatic disease including non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Current pharmacological therapies lack conclusive efficacy and thus treatment options are limited Novel therapeutics that suppress either hepatic lipogenesis and/or hepatic inflammation may be useful. Here, we describe the development of the first selective synthetic LXR inverse agonist (SR9238) and demonstrate that this compound effectively suppresses hepatic lipogenesis, inflammation, and hepatic lipid accumulation in a mouse model of non-alcoholic hepatosteatosis. SR9238 displays high potency for both LXR alpha and LXR beta (40-200 nM IC50) and was designed to display liver specificity so as to avoid potential side effects due to suppression of LXR in the periphery. Unexpectedly, treatment of diet-induced obese mice with SR9238 suppressed plasma cholesterol levels. These data indicate that liver-selective LXR inverse agonists may hold utility in the treatment of liver disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available