4.6 Article

Butenolide Inhibits Marine Fouling by Altering the Primary Metabolism of Three Target Organisms

Journal

ACS CHEMICAL BIOLOGY
Volume 7, Issue 6, Pages 1049-1058

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cb200545s

Keywords

-

Funding

  1. China Ocean Mineral Resources Research and Development [DY125-15-T-02]
  2. RGC of the HKSAR
  3. NSFC of China [N_HKUST602/09]
  4. King Abdullah University of Science and Technology [SA-C0040/UK-C0016]

Ask authors/readers for more resources

Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolide's molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid beta-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase beta subunit (SCS beta) and inhibited bacterial growth. ACAT1, ACADVL, and SCS beta are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available