4.6 Article

Kinetic Consequences of Replacing the Internucleotide Phosphorus Atoms in DNA with Arsenic

Journal

ACS CHEMICAL BIOLOGY
Volume 6, Issue 2, Pages 127-130

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cb2000023

Keywords

-

Ask authors/readers for more resources

It was claimed in a recent publication that a strain of Halomonadacea bacteria (GFAJ-1) isolated from the arsenic-rich waters of Mono Lake, California is able to substitute arsenic for phosphorus in its macromolecules and small molecule metabolites. In this short Perspective, we consider chemical and biochemical issues surrounding the central claim that Halomonadacea GFAJ-1 is able to survive while incorporating kinetically labile arsenodiester linkages into the backbone of its DNA. Chemical precedents suggest that arsenodiester linkages in the putative arsenic-containing DNA of GFAJ-1 would undergo very rapid hydrolytic cleavage in water at 25 degrees C with an estimated half-life of 0.06 s. In contrast, the phosphodiester linkages of native DNA undergo spontaneous hydrolysis with a half-life of approximately 30,000,000 y at 25 degrees C. Overcoming such dramatic kinetic instability in its genetic material would present serious challenges to Halomonadacea GFAJ-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available