4.8 Article

Advanced P2-Na2/3Ni1/3Mn7/12Fe1/12O2 Cathode Material with Suppressed P2-O2 Phase Transition toward High-Performance Sodium-Ion Battery

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 40, Pages 34272-34282

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b12204

Keywords

sodium-ion battery; iron substitution; high performance cathode; low-temperature performance; full cell

Funding

  1. National Natural Science Foundation of China [21573036, 21274017]
  2. Foundation of the Education Department of Jilin Province [111099108]
  3. Jilin Provincial Research Center of Advanced Energy Materials (Northeast Normal University)

Ask authors/readers for more resources

As a promising cathode material of sodium-ion battery, P2-type Na2/3Ni1/3Mn2/3O2 (NNMO) possesses a theoretically high capacity and working voltage to realize high energy storage density. However, it still suffers from poor cycling stability mainly incurred by the undesirable P2-O2 phase transition. Herein, the electrochemically active Fe3+ ions are introduced into the lattice of NNMO, forming Na2/3Ni1/3Mn2/3-xFexO2 (x = 0, 1/24, 1/12, 1/8, 1/6) to effectively stabilize the P2-type crystalline structure. In such Fe-substituted materials, both Ni2+/Ni4+ and Fe3+/Fe4+ couples take part in the redox reactions, and the P2-O2 phase transition is well restrained during cycling, as verified by ex situ X-ray diffraction. As a result, the optimized Na2/3Ni1/3Mn7/12Fe1/12O2 (1/12-NNMF) has a long-term cycling stability with the fading rate of 0.05% per cycle over 300 cycles at 5 C. Furthermore, the 1/12-NNMF delivers excellent rate capabilities (65 mA h g(-1) at 25 C) and superior low-temperature performance (the capacity retention of 94% at -25 degrees C after 80 cycles) owing to the enhanced Na diffusion upon Fe doping, which is deduced by the studies of electrode kinetics. More significantly, the 1/12-NNMF also displays remarkable sodium-ion full-cell properties when merged with an LS-Sb@G anode, thus implying the possibility of their practical application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available