4.8 Article

Multifunctional Nanoparticles Enable Efficient Oral Delivery of Biomacromolecules via Improving Payload Stability and Regulating the Transcytosis Pathway

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 40, Pages 34039-34049

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b13707

Keywords

oral drug delivery; biomacromolecular stability; EGP; lysosomal entrapment; glucose consumption assay; caveolae-mediated pathway

Funding

  1. National Science Foundation for Distinguished Young Scholars [81625023]
  2. National Natural Science Foundation of China [81872818]
  3. Major Research Plan of National Natural Science Foundation of China [81690261]
  4. Sichuan Youth Science and Technology Innovation Research Team Funding [2016TD0001]

Ask authors/readers for more resources

In oral delivery of biomacromolecules, ligand-modified nanoparticles (NPs) have emerged as a promising tool to improve the epithelial uptake of the loaded protein/peptide. Unfortunately, the stability and the transport mechanisms of the biotherapeutics during the intracellular transportation still remained unclear, leading to the poor transepithelial efficiency. Additionally, developing novel approaches to simultaneously monitor the payload bioactivity during the transport processes is veritably benefit for keeping their bioactivity. In the present study, EGP peptide (KRKKKGKGLGKKRDPCLRKYK), a ligand with high affinity to heparan sulfate proteoglycans (HSPGs), was found remarkably increasing the cellular uptake (4.5-fold) and also surprisingly achieving high transcytosis efficiency (4.2-fold) of poly(lactide-co-glycolide) NPs on Caco-2 cell monolayer. Compared with unmodified NPs (C NPs), EGP modified NPs (EGP NPs) exhibited more desirable colloidal stability within epithelia. In the subsequent study, the bioactivity of encapsulated insulin during the cellular transportation was innovatively monitored by a glucose consumption assay. Inspiringly, EGP NPs could mostly retain the bioactivity of loaded insulin whereas insulin from INS-C NPs was significantly degraded. Then the detailed mechanism study revealed that the binding of EGP to HSPGs played a vital role on NP transportation. Unlike C NPs being delivered in the endo/lysosomal pathway, EGP NPs were involved in caveolae-mediated transport, which contributes to the efficient avoidance of the lysosomal entrapment and sequentially facilitates the direct apical-to-basolateral transcytosis. The enhanced absorption of EGP NPs was confirmed in in situ intestinal loop models. Most importantly, oral administrated INS-EGP NPs generated a strong hypoglycemic response on diabetic rats with 10.2-fold and 2.6-fold increase in bioavailability compared with free insulin and INS-C NPs, respectively. The work provided an innovative strategy to monitor the payload bioactivity during the transport processes and proposed a novel aspect to increase oral bioavailability of biomacromolecules via improving payload stability and regulating the transcytosis pathway of nanocarriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available