4.8 Article

Ultrabroadband Three-Dimensional Printed Radial Perfectly Symmetric Gradient Honeycomb All-Dielectric Dual-Directional Lightweight Planar Luneburg Lens

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 10, Issue 44, Pages 38404-38409

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b11239

Keywords

gradient metamaterial; all-dielectric Luneburg lens; ultrabroadband; lightweight; honeycomb structure; dual directive

Funding

  1. National Natural Science Foundation of China (NSFC) [11702024, 11872113]
  2. China Postdoctoral Science Foundation [2017M620633]

Ask authors/readers for more resources

An ultrabroadband all-dielectric planar Luneburg lens has been designed and fabricated in this study, which is in the form of a radial gradient lightweight honeycomb column. Because of the novel design of a radial symmetric honeycomb-like microstructure in the subwavelength dimension and the radial gradient configuration according to the refractive index distribution of Luneburg lens, the present lens can focus incident plane waves on the opposite side with high convergence, and its operating frequency range is rather broadband, spanning from 6 to 16 GHz. Besides, the all-dielectric honeycomb-like lens is lightweight with a mass density of 0.23 g/cm(3), and its broadband transmittance is higher than the reported cases consisting of metallic metamaterial or gradient photonic crystal structures. A prototype of the lens is fabricated by using 3D printing techniques, on which the electric near-field distribution and far-field radiation pattern measurements have been carried out, and the aforementioned performances were demonstrated experimentally. It was also observed that for two point sources placed at the edge of the lens whose intersection angle with the center of the lens is 90, the far-field radiation pattern was still kept highly directional, which means that the lens can generate two highly directional beams simultaneously, and is an efficient double input-double output device.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available