4.8 Article

Molecular Weight Dependence of the Morphology in P3HT:PCBM Solar Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 22, Pages 19876-19887

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am505283k

Keywords

P3HT; morphology; molecular weight; melting point depression; crystallinity

Funding

  1. Department of Energy (DOE) [DE-DE-SC0001087]
  2. DOE, Office of Science
  3. DOE, Office of Basic Energy Sciences

Ask authors/readers for more resources

In polymer-based photovoltaic devices, optimizing and controlling the active layer morphology is important to enhancing the device efficiency. Using poly(3-hexylthiophene) (P3HT) with well-defined molecular weights (MWs), synthesized by the Grignard metathesis (GRIM) method, we show that the morphology of the photovoltaic active layer and the absorption and crystal structure of P3HT are dependent on the MW. Differential scanning calorimetry showed that the crystallinity of P3HT reached a maximum for intermediate MWs. Grazing-incidence wide-angle X-ray diffraction showed that the spacing of the (100) planes of P3HT increased with increasing MW, while the crystal size decreased. Nonlinear crystal lattice expansions were found for both the (100) and (020) lattice planes, with an unusual p-p-stacking enhancement observed between 50 and 100 degrees C. The melting point depression for P3HT, when mixed with [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), and, hence, the Flory-Huggins interaction parameter depended on the MW. PCBM was found to perturb the ordering of P3HT chains. In photovoltaic devices, P3HT with a MW of similar to 20K showed the best device performance. The morphologies of these blends were studied by grazing-incidence small-angle X-ray scattering (GISAXS) and resonant soft X-ray scattering. In GISAXS, we observed that the low-molecular-weight P3HT more readily crystallizes, promoting a phase-separated morphology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available