4.8 Article

High-Performance Supercapacitor Electrode Based on the Unique ZnO@Co3O4 Core/Shell Heterostructures on Nickel Foam

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 18, Pages 15905-15912

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am5035494

Keywords

cobalt oxides; core/shell; electrode material; binder-free; supercapacitor

Funding

  1. National Basic Research Program of China [2007CB310500]
  2. National Natural Science Foundation of China [61376073]

Ask authors/readers for more resources

Currently, tremendous attention has been paid to the rational design and synthesis of unique core/shell heterostructures for high-performance supercapacitors. In this work, the unique ZnO@Co3O4 core/shell heterostructures on nickel foam are successfully synthesized through a facile and cost-effective hydrothermal method combined with a short post annealing treatment. Mesoporous Co3O4 nanowires are multidirectional growing on the rhombus-like ZnO nanorods. In addition, the growth mechanism for such unique core/shell heterostructures is also proposed. Supercapacitor electrodes based on the ZnO@Co3O4 and Co3O4 heterostructures on nickel foam are thoroughly characterized. The ZnO@Co3O4 electrode exhibits high capacitance of 1.72 F cm(-2) (857.7 F g(-1)) at a current density of 1 A g(-1), which is higher than that of the Co3O4 electrode. Impressively, the capacitance of the ZnO@Co3O4 electrode increases gradually from 1.29 to 1.66 F cm(-2) (830.8 F g(-1)) after 6000 cycles at a high current density of 6 A g(-1), indicating good long-term cycling stability. These results indicate the unique ZnO@Co3O4 electrode would be a promising electrode for high-performance supercapacitor applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available