4.8 Article

Size-Tunable and Monodisperse Tm3+/Gd3+-Doped Hexagonal NaYbF4 Nanoparticles with Engineered Efficient Near Infrared-to-Near Infrared Upconversion for In Vivo Imaging

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 16, Pages 13884-13893

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am503288d

Keywords

near-infrared; upconversion nanocrystals; core-shell; bioimaging

Funding

  1. National Institutes of Health [R01CA119358, RO1CA104492]
  2. Swedish Energy Agency [32076-1]
  3. Natural Science Foundation of China [51102066]
  4. Program for Basic Research Excellent Talents in Harbin Institute of Technology (BRETHI) [2012018]
  5. Fundamental Research Funds for the Central Universities (Harbin Institute of Technology)
  6. John R. Oishei Foundation

Ask authors/readers for more resources

Hexagonal NaYbF4:Tm3+ upconversion nanoparticles hold promise for use in high contrast near-infrared-to-near-infrared (NIR-to-NIR) in vitro and in vivo bioirnaging. However, significant hurdles remain in their preparation and control of their morphology and size, as well as in enhancement of their upconversion efficiency. Here, we describe a systematic approach to produce highly controlled hexagonal NaYbF4:Tm3+ nanopartides with superior upconversion. We found that doping appropriate concentrations of trivalent gadolinium (Gd3+) can convert NaYbF4:Tm3+ 0.5% nanopartides with cubic phase and irregular shape into highly monodisperse NaYbF4:Tm3+ 0.5% nanoplates or nanospheres in a pure hexagonal-phase and of tunable size. The intensity and the lifetime of the upconverted NIR luminescence at 800 nm exhibit a direct dependence on the size distribution of the resulting nanopartides, being ascribed to the varied surface-to-volume ratios determined by the different nanoparticle size. Epitaxial growth of a thin NaYF4 shell layer of similar to 2 nm on the similar to 22 nm core of hexagonal NaYbF4:Gd3+ 30%/Tm3+ 0.5% nanoparticles resulted in a dramatic 350 fold NIR upconversion efficiency enhancement, because of effective suppression of surface-related quenching mechanisms. In vivo NIR-to-NIR upconversion imaging was demonstrated using a dispersion of phospholipid-polyethylene glycol (DSPE-PEG)-coated core/shell nanopartides in phosphate buffered saline.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available