4.8 Article

Assembling and Redispersibility of Rice Straw Nanocellulose: Effect of tert-Butanol

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 22, Pages 20075-20084

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am505626a

Keywords

cellulose nanocrystals; cellulose nanofibrils; self-assembly; redispersibility; rice straw

Funding

  1. California Rice Research Board [RU-9]

Ask authors/readers for more resources

Self-assembling of sulfuric-acid-hydrolyzed cellulose nanocrystals (CNCs, 6.4 nm wide) and TEMPO oxidized cellulose nanofibrils (CNFs, 2.1 nm wide) from aqueous suspensions was induced by rapid freezing (-196 degrees C, 10 min) and slow lyophilization (-50 degrees C, 0.05 mbar, 2 days). The assembled structures contain submicron (200-700 nm) wide and tens of micrometer long fibers at up to 0.1-0.5% and 0.01-0.05%, the critical fiber-to-film transformation concentrations for CNCs and CNFs, respectively. The assembled fiber widths were significantly reduced to similar to 40 nm, that is, by 1 order of magnitude, when 10% of the aqueous media was replaced with tert-butanol. Further increasing tert-butanol contents in the media to 93/7 (CNCs) and 50/50 (CNFs) tert-butanol/water, both at 0.1% nanocellulose concentration, reduced longitudinal assembling for CNCs and lateral assembling for CNFs as well as increased critical fiber-to-film transformation concentration for CNFs. While all assembled structure could be redispersed in water, those from tert-butanol/water could also be easily redispersed in DMF aided with brief 2 min ultrasonication. None of the assembled structures could be redispersed in the lower dielectric constant ethanol, acetone or chloroform.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available