4.8 Article

Improved Efficiency and Stability of Polymer Solar Cells Utilizing Two-Dimensional Reduced Graphene Oxide: Graphene Oxide Nanocomposites as Hole-Collection Material

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 24, Pages 22334-22342

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am506326y

Keywords

polymer solar cells; hole collection; reduced graphene oxide; graphene oxide

Funding

  1. Agency for Science, Technology and Research (A* STAR) [R284-000-101-305]

Ask authors/readers for more resources

Improving device efficiency and stability of polymer solar cells (PSCs) is crucial for their practical application. Although graphene oxide (GO) could replace the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the hole-collection material and improve the photovoltaic stability of PSCs, the power conversion efficiency is moderate because of its insulating nature. In this article, nanocomposites of two-dimensional reduced graphene oxide (rGO) and GO are used to replace the acidic PEDOT:PSS as the hole-collection material of PSCs. The nanocomposites are formed by dispersing rGO into aqueous solution of GO. GO serves as a surfactant, and it can stabilize rGO. The presence of rGO can quench the photoluminescence of GO in water. The nanocomposite films exhibit higher conductivity than GO films without rGO. They are used as the hole-collection material of PSCs. The optimal PSCs with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester exhibit such photovoltaic performances: short-circuit current density of 10.37 mA cm(2), open-circuit voltage of 0.60 V, fill factor of 67.66%, and power conversion efficiency of 4.21%. The photovoltaic efficiency is much higher than that of the control devices with GO only (3.36%) as the hole-collection material. In addition, the presence of rGO in GO gives rise to better stability for the PSCs in air than that of the devices with GO only. The devices with rGO:GO composites as the hole-collection materials exhibit much better stability in power conversion efficiency than the control devices with PEDOT:PSS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available