4.8 Article

Mn-Doped TiO2 Nanosheet-Based Spheres as Anode Materials for Lithium-Ion Batteries with High Performance at Elevated Temperatures

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 10, Pages 7292-7300

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am500604p

Keywords

nanosheet-based spheres; protonated dititanate; ion-exchange; lithium-ion batteries

Ask authors/readers for more resources

Novel Mn2+-doped TiO2 nanosheet-based spheres have been successfully prepared via a simple hydrothermal and ion-exchange process. After hydrothermal growth, flowerlike nanosheet-based spheres of protonated dititanate were confirmed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hierarchical nanostructure was obtained via a dissolution-recrystallization process starting from a precursor of homogenous TiO2 nanospheres. Moreover, as-prepared protonated dititanate was converted to Mn-doped nanosheet-based spheres via the ion-exchange method. Then, both the doped and undoped protonated dititanate were calcined and tested as anode materials for lithium-ion battery applications at elevated temperatures. The undoped sample showed an initial capacity of 201 mAh g(-1) but only had 44.1% of the initial capacity retained after 50 cycles at mixed current densities of 30, 150, and 500 mA g(-1) at 55 degrees C, while the Mn-doped one exhibited an initial capacity of 190 mAh g(-1) and 91.4% capacity retention with superior reversible capacity under the same test conditions. Comparisons between different samples suggest that manganese ions on the surface of TiO2 nanosheet-based spheres are responsible for the enhanced electrochemical performance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available