4.8 Article

Enhancement in Ion Adsorption Rate and Desalination Efficiency in a Capacitive Deionization Cell through Improved Electric Field Distribution Using Electrodes Composed of Activated Carbon Cloth Coated with Zinc Oxide Nanorods

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 13, Pages 10113-10120

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am501041t

Keywords

electric field; capacitive deionization; zinc oxide; activated carbon cloth; charge efficiency

Funding

  1. Chair in Nanotechnology
  2. Research Council of Oman (TRC)
  3. Sultan Qaboos University

Ask authors/readers for more resources

Electrodes composed of activated carbon cloth (ACC) coated with zinc oxide (ZnO) nanorods are compared with plain ACC electrodes, with respect to their desalination efficiency of a 17 mM NaCl solution at different applied potentials. Polarization of the ZnO nanorods increased the penetration depth and strength of the electric field between the electrodes, leading to an increase in the capacitance and charge efficiency at reduced input charge ratios. Uniform distribution of the electric field lines between two electrodes coated with ZnO nanorods led to faster ion adsorption rates, reduced the electrode saturation time, and increased the average desalination efficiency by similar to 45% for all applied potentials. The electrodes were characterized for active surface area, capacitance from cyclic voltammetry, theoretical assessment of surface area utilization, and the magnitude of electric field force acting on an ion of unit charge for each potential.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available