4.8 Article

Stoichiometry Gradient, Cation Interdiffusion, and Band Alignment between a Nanosized TiO2 Blocking Layer and a Transparent Conductive Oxide in Dye-Sensitized Solar Cell Front Contacts

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 1, Pages 765-773

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am5072018

Keywords

DSSC; band alignment; blocking layer; front contact; photoemission; solar cell

Ask authors/readers for more resources

An angle-resolved photoemission spectroscopy study allowed us to identify cation interdiffusion and stoichiometry gradients at the interface between a nanosized TiO2 blocking layer and a transparent conductive Cd-Sn oxide substrate. A stoichiometry gradient for the Sn cations is already found in the bare Cd-Sn oxide layer. When TiO2 ultrathin layers are deposited by RF sputtering on the Cd-Sn oxide layer, Ti is found to partially replace Sn, resulting in a Cd-Sn-Ti mixed oxide layer with a thickness ranging from 0.85 to 3.3 nm. The band gap profile across the junction has been reconstructed for three TiO2 layers, resulting in a valence band offset decrease (and a conduction band offset increase) with the blocking layer thickness. The results are related to the cell efficiencies in terms of charge injection and recombination processes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available