4.8 Article

Fluorescence Ratiometric Sensor for Trace Vapor Detection of Hydrogen Peroxide

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 11, Pages 8708-8714

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am501502v

Keywords

vapor detection; hydrogen peroxide; fluorescent sensor; FRET

Funding

  1. DHS [2009-ST-108-LR0005]

Ask authors/readers for more resources

Trace vapor detection of hydrogen peroxide (H2O2) represents a practical approach to nondestructive detection of peroxide-based explosives, including liquid mixtures of H2O2 and fuels and energetic peroxide derivatives, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), and hexamethylene triperoxide diamine (HMTD). Development of a simple chemical sensor system that responds to H2O2 vapor with high reliability and sufficient sensitivity (reactivity) remains a challenge. We report a fluorescence ratiometric sensor molecule, diethyl 2,5-bis((((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)carbonyl)amino)terephthalate (DAT-B), for H2O2 that can be fabricated into an expedient, reliable, and sensitive sensor system suitable for trace vapor detection of H2O2. DAT-B is fluorescent in the blue region, with an emission maximum at 500 nm in the solid state. Upon reaction with H2O2, DAT-B is converted to an electronic push-pull structure, diethyl 2,5-diaminoterephthalate (DAT-N), which has an emission peak at a longer wavelength centered at 574 nm. Such H2O2-mediated oxidation of aryl boronates can be accelerated through the addition of an organic base such as tetrabutylammonium hydroxide (TBAH), resulting in a response time of less than 0.5 s under 1 ppm of H2O2 vapor. The strong overlap between the absorption band of DAT-N and the emission band of DAT-B enables efficient Forster resonance energy transfer (FRET), thus allowing further enhancement of the sensing efficiency of H2O2 vapor. The detection limit of a drop-cast DAT-B/TBAH film was projected to be 7.7 ppb. By combining high sensitivity and selectivity, the reported sensor system may find broad application in vapor detection of peroxide-based explosives and relevant chemical reagents through its fabrication into easy-to-use, cost-effective kits.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available