4.8 Article

Solution-Processed DPP-Based Small Molecule that Gives High Photovoltaic Efficiency with Judicious Device Optimization

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 6, Pages 2033-2039

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am302896u

Keywords

solution-processed small molecules; diketopyrrolopyrrole; organic solar cells; device optimization

Funding

  1. NSFC [20973182, 91227112]
  2. Chinese Academy of Sciences, Project 973 [2011CB808400]

Ask authors/readers for more resources

A solution-processed diketopyrrolopyrrole (DPP)-based small molecule, namely BDT-DPP, with broad absorption and suitable energy levels has been synthesized. The widely used solvents of chloroform (CF) and o-dichlorobenzene (o-DCB) were used as the spin-coating solvent, respectively, and 1,8-diiodooctane (DIO) was used as additive to fabricate efficient photovoltaic devices with BDT-DPP as the donor material and PC71BM as the acceptor material. Devices fabricated from CF exhibit poor fill factor (FF) of 43%, low short-circuit current density (J(sc)) of 6.86 mA/cm(2), and moderate power conversion efficiency (PCE) of 2.4%, due to rapid evaporation of CF, leading to poor morphology of the active layer. When 0.3% DIO was added, the FF and J(sc) were improved to 60% and 8.49 mA/cm(2), respectively, because of the better film morphology. Active layer spin-coated from the high-boiling-point solvent of o-DCB shows better phase separation than that from CF, because of the slow drying nature of o-DCB, offering sufficient time for the self-organization of active-layer. Finally, using o-DCB as the parent solvent and 0.7% DIO as the cosolvent, we obtained optimized devices with continuous interpenetrating network films, affording a J(sc) of 11.86 mA/cm(2), an open-circuit voltage (V-oc) of 0.72 V, an FF of 62%, and a PCE of 5.29%. This PCE is, to the best of our knowledge, the highest efficiency reported to date for devices prepared from the solution-processed DPP-based small molecules.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available