4.8 Article

Constructed Uninterrupted Charge-Transfer Pathways in Three-Dimensional Micro/Nanointerconnected Carbon-Based Electrodes for High Energy-Density Ultralight Flexible Supercapacitors

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 6, Issue 1, Pages 210-218

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am403760h

Keywords

3D micro/nanointerconnected structure; uninterrupted charges transfer pathways; flexible; ultralight; supercapacitors

Funding

  1. National Natural Science Foundation of China [61176058, 51202100]
  2. Fundamental Research Funds for the Central Universities [lzujbky-2013-231]

Ask authors/readers for more resources

A type of freestanding three-dimensional (3D) micro/nanointerconnected structure, with a conjunction of microsized 3D graphene networks, nanosized 3D carbon nanofiber (CNF) forests, and consequently loaded MnO2 nanosheets, has been designed as the electrodes of an ultralight flexible supercapacitor. The resulting 3D graphene/CNR/MnO2 composite networks exhibit remarkable flexibility and highly mechanical properties due to good and intimate contacts among them, without current collectors and binders. Simultaneously, this designed 3D micro/nanointerconnected structure can provide an uninterrupted double charges freeway network for both electron and electrolyte ion to minimize electron accumulation and ion-diffusing resistance, leading to an excellent electrochemical performance. The ultrahigh specific capacitance of 946 F/g from cyclic voltammetry (CV) (or 920 F/g from galvanostatic charging/discharging (GCD)) were obtained, which is superior to that of the present electrode materials based on 3D graphene/MnO2 hybrid structure (482 F/g). Furthermore, we have also investigated the superior electrochemical performances of an asymmetric supercapacitor device (weight of less than 12 mg/cm(2) and thickness of similar to 0.8 mm), showing a total capacitance of 0.33 F/cm(2) at a window voltage of 1.8 V and a maximum energy density of 53.4W h/kg for driving a digital clock for 42 min. These inspiring performances would make our designed supercapacitors become one of the most promising candidates for the future flexible and lightweight energy storage systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available