4.8 Article

Synchronous Electrosynthesis of Poly(xanthurenic acid)-Reduced Graphene Oxide Nanocomposite for Highly Sensitive Impedimetric Detection of DNA

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 9, Pages 3495-3499

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am400370s

Keywords

graphene oxide; synchronous electrosynthesis; poly(xanthurenic acid); electrochemical reduction; impedimetric detection; synergistic effect

Funding

  1. National Natural Science Foundation of China [21275084, 20975057, 20805025]
  2. Doctoral Foundation of the Ministry of Education of China [20113719130001]
  3. Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province [BS2012CL013]
  4. Scientific and Technical Development Project of Qingdao [12-1-4-3-(23)-jch]

Ask authors/readers for more resources

A novel and simple synchronous electrochemical synthesis of poly(xanthurenic acid, Xa), electrochemically reduced graphene oxide nanocomposite (PXa-ERGNO), via cyclic voltammetry (CV) was reported, where graphene oxide (GNO) and Xa monomer were adopted as precursors. The resulting PXa-ERGNO nanocomposite was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, CV and electrochemical impedance spectroscopy (EIS). The pi-pi* interactions between the conjugated GNO layers and aromatic ring of Xa-enhanced the electropolymerization efficiency accompanied with an increased electrochemical response of PXa. The rich carboxyl groups of PXa-ERGNO film were applied to stably immobilize the probe DNA with amino groups at 5' end via covalent bonding. The captured probe could sensitively and selectively recognize its target DNA via EIS. The dynamic detection range was from 1.0 x 10(-14) mol/L to 1.0 x 10(-8) mol/L with a detection limit of 4.2 x 10(-15) mol/L due to the synergistic effect of integrated PXa-ERGNO nanocomposite. This graphene-based electrochemical platform showed intrinsic advantage, such as simplicity, good stability, and high sensitivity, which could serve as an ideal platform for the biosensing field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available