4.8 Article

All-Organic Sulfonium Salts Acting as Efficient Solution Processed Electron Injection Layer for PLEDs

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 23, Pages 12346-12354

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am402991b

Keywords

OLEDs; triflate; nonaflate; counterions; cathode interfacial layer; electron transport

Funding

  1. European Commission [FP7-REGPOT-2009-24.9940]
  2. Project MiNaSys-CoE, Micro and Nano Systems - Center of Excellence

Ask authors/readers for more resources

Herein we introduce the all-organic triphenylsulfonium (TPS) salts cathode interfacial layers (CILs), deposited from their methanolic solution, as a new simple strategy for circumventing the use of unstable low work function metals and obtaining charge balance and high electroluminescence efficiency in polymer light-emitting diodes (PLEDs). In particular, we show that the incorporation of TPS-triflate or TPS-nonaflate at the polymer/Al interface improved substantially the luminous efficiency of the device (from 2.4 to 7.9 cd/A) and reduced the turn-on and operating voltage, whereas an up to 4-fold increase in brightness (similar to 11 250 cd/m(2) for TPS-triflate and 14 682 cd/m(2) for TPS-nonaflate compared to similar to 3221 cd/m(2) for the reference device) was observed in poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1',3-thiadiazole)] (F8BT)-based PLEDs. This was mainly attributed to the favorable decrease of the electron injection barrier, as derived from the open-circuit voltage (V-oc) measurements, which was also assisted by the conduction of electrons through the triphenylsulfonium salt sites. Density functional theory calculations indicated that the total energy of the anionic (reduced) form of the salt, that is, upon placing an electron to its lowest unoccupied molecular orbital, is lower than its neutral state, rendering the TPS-salts stable upon electron transfer in the solid state. Finally, the morphology optimization of the TPS-salt interlayer through controlling the processing parameters was found to be critical for achieving efficient electron injection and transport at the respective interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available