4.8 Article

A Fast Method to Produce Strong NFC Films as a Platform for Barrier and Functional Materials

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 11, Pages 4640-4647

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am401046x

Keywords

nanofibrillated cellulose; barrier; film; oxygen permeability; solvent resistance; wet strength

Funding

  1. Finnish Funding Agency for Technology and Innovation (Tekes)
  2. Naseva II project

Ask authors/readers for more resources

In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease. At a relative humidity below 65%, oxygen permeability of the pure and unmodified NFC films was below 0.6 cm(3) mu m m(-2) d(-1) kpa(-1), and no grease penetrated the film. However, the largest advantage of these films was their resistance to various solvents, such as water, methanol, toluene, and dimethylacetamide. Although they absorbed a substantial amount of solvent, the films could still be handled after 24 h of solvent soaking. Hot pressing was introduced as a convenient method to not only increase the drying speed of the films but also enhance the robustness of the films. The wet strength of the films increased due to the pressing. Thus, they can be chemically or physically modified through adsorption or direct chemical reaction in both aqueous and organic solvents. Through these modifications, the properties of the film can be enhanced, introducing, for example, functionality, hydrophobicity, or bioactivity. Herein, a simple method using surface coating with wax to improve hydrophobicity and oxygen barrier properties at very high humidity is described. Through this modification, the oxygen permeability decreased further and was below 17 cm(3) mu m m(-2) d(-1) kPa(-1) even at 974% RH, and the water vapor transmission rate decreased from 600 to 40 g/m(2) day. The wax treatment did not deteriorate the dry strength of the film. Possible reasons for the unique properties are discussed. The developed robust NFC films can be used as a generic, environmentally sustainable platform for functional materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available