4.8 Article

A Novel Cobalt-Free, CO2-Stable, and Reduction-Tolerant Dual-Phase Oxygen-Permeable Membrane

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 21, Pages 11038-11043

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am403272z

Keywords

oxygen permeation; CO2-stable membrane; reduction-tolerant membrane; stability; dual-phase membrane

Funding

  1. Ministry of Science and Technology of China [2012CB215403]
  2. Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province

Ask authors/readers for more resources

A novel CO2-stable and reduction-tolerant Ce0.8Sm0.2O2-delta-La0.9Sr0.1FeO3-delta (SDC-LSF) dense dual-phase oxygen-permeable membrane was designed and evaluated in this work. Homogeneous SDC-LSF composite powders for membrane fabrication were synthesized via a one-pot combustion method. The chemical compatibility and ion interdiffusion behavior between the fluorite phase SDC and perovskite phase LSF during the synthesis process was studied. The oxygen permeation flux through the dense dual-phase composite membranes was evaluated and found to be highly dependent on the volume ratio of SDC and LSF. The SDC-LSF membrane with a volume ratio of 7:3 (SDC70-LSF30) possessed the highest permeation flux, achieving 6.42 x 10(-7) mol-cm(-2).s(-1) under an air/CO gradient at 900 degrees C for a 1.1-mm-thick membrane. Especially, the membrane performance showed excellent durability and operated stably without any degradation at 900 degrees C for 450 h with helium, CO2, or CO as the sweep gas. The present results demonstrate that a SDC70-LSF30 dual-phase membrane is a promising chemically stable device for oxygen production and CO2- capture with sufficiently high oxygen permeation flux.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available