4.8 Article

Surface Patterning of Mesoporous Niobium Oxide Films for Solar Energy Conversion

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 8, Pages 3469-3474

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am400598u

Keywords

niobium oxide; surface patterning soft-lithography; photonic crystal; dye-sensitized solar cell

Funding

  1. UNC EFRC: Center for Solar Fuels, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001011]

Ask authors/readers for more resources

An array of periodic surface features were patterned on mesoporous niobium oxide films by a soft-lithographic technique with the goal of constructing a photonic crystal (PC) structure on the back side of the oxide. The oxide films, fabricated by mixing sol-gel derived niobium oxide nanoparticles and hydroxypropyl cellulose, were employed as photoelectrodes in dye sensitized solar cells (DSSCs), and their performance evaluated against their flat counterparts. The surface patterns were imprinted using a photocurable perfluoropolyether (PFPE) soft-replica of a silicon master with a two-dimensional array of cylindrical posts (200 nm (D) x 200 nm (H)) in hexagonal geometry. The PC on the niobium oxide surface caused large changes in optical measurements, particularly in the blue wavelengths. To evaluate the optical effect on solar energy conversion, the incident photon-to-current conversion efficiency (IPCE) was measured in the patterned devices and the control group. The IPCE of patterned niobium oxide anodes exhibited a relative enhancement in photocurrent generation over the wavelength range corresponding to the higher absorption in optical measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available