4.8 Article

Synthesis and Characterization of Novel Plasmonic Ag/AgX-CNTs (X = Cl, Br, I) Nanocomposite Photocatalysts and Synergetic Degradation of Organic Pollutant under Visible Light

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 5, Issue 15, Pages 6959-6967

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am401459c

Keywords

plasmonic photocatalyst; carbon nanotube supporter; silver halides; visible light; photocatalytic activity

Funding

  1. Team Project of the Natural Science Foundation of Guangdong Province, China [S2012030006604]
  2. NSFC [21077104]
  3. Science and Technology Project of Guangdong Province, China [2012A032300010, 2011A030700003]
  4. China Post-doctoral Science Foundation [2012M511843]

Ask authors/readers for more resources

A series of novel well-defined Ag/AgX (X = Cl, Br, I) loaded carbon nanotubes (CNTs) composite photocatalysts (Ag/AgX-CNTs) were fabricated for the first time via a facile ultrasonic assistant deposition-precipitation method at the room temperature (25 +/- 1 degrees C). X-ray diffraction, X-ray photoelectron spectroscopy, nitrogen adsorption-desorption analysis, scanning electron microscopy, and ultraviolet-visible light absorption spectra analysis were used to characterize the structure, morphology, and optical properties of the as-prepared photocatalysts. Results confirmed the existence of the direct interfacial contact between Ag/AgX nanoparticles and CNTs, and Ag/AgX-CNTs nanocomposites exhibit superior absorbance in the visible light (VL) region owing to the surface plasmon resonance (SPR) of Ag nanoparticles. The fabricated composite photocatalysts were employed to remove 2,4,6-tribromophenol (TBP) in aqueous phase. A remarkably enhanced VL photocatalytic degradation efficiency of Ag/AgX-CNTs nanocomposites was observed when compared to that of pure AgX or CNTs. The photocatalytic activity enhancement of Ag/AgX-CNTs was due to the effective electron transfer from photoexcited AgX and plasmon-excited Ag(0) nanoparticles to CNTs. This can effectively decrease the recombination of electron-hole pairs, lead to a prolonged lifetime of the photoholes that promotes the degradation efficiency.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available