4.8 Article

Ruthenium(0) Nanoparticles Supported on Multiwalled Carbon Nanotube As Highly Active Catalyst for Hydrogen Generation from Ammonia-Borane

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 4, Issue 11, Pages 6302-6310

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am3019146

Keywords

ruthenium nanoparticles; carbon nanotube; heterogeneous catalyst; hydrogen generation; ammonia borane; hydrolysis

Funding

  1. Turkish Academy of Sciences
  2. Scientific and Technological Research Council of Turkey
  3. IntenC exchange program

Ask authors/readers for more resources

Ruthenium(0) nanoparticles supported on multiwalled carbon nanotubes (Ru(0)@MWCNT) were in situ formed during the hydrolysis of ammonia-borane (AB) and could be isolated from the reaction solution by filtration and characterized by ICP-OES, XRD, TEM, SEM, EDX, and XPS techniques. The results reveal that ruthenium(0) nanoparticles of size in the range 1.4-3.0 nm are well-dispersed on multiwalled carbon nanotubes. They were found to be highly active catalyst in hydrogen generation from the hydrolysis of AB with a turnover frequency value of 329 min(-1). The reusability experiments show that Ru(0)@MWCNTs are isolable and redispersible in aqueous solution; when redispersed they are still active catalyst in the hydrolysis of AB exhibiting a release of 3.0 equivalents of H-2 per mole of NH3BH3 and preserving 41% of the initial catalytic activity even after the fourth run of hydrolysis. The lifetime of Ru(0)@MWCNTs was measured as 26400 turnovers over 29 h in the hydrolysis of AB at 25.0 +/- 0.1 degrees C before deactivation. The work reported here also includes the kinetic studies depending on the temperature to determine the activation energy of the reaction (E-a = 33 +/- 2 kJ/mol) and the effect of catalyst concentration on the rate of the catalytic hydrolysis of AB, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available