4.8 Article

Synthesis of Gadolinium Nanoscale Metal-Organic Framework with Hydrotropes: Manipulation of Particle Size and Magnetic Resonance Imaging Capability

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 3, Issue 5, Pages 1502-1510

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am200075q

Keywords

gadolinium nanoparticle; hydrotrope; magnetic resonance imaging

Funding

  1. Colorado Office of Economic Development and International Trade
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [0923537] Funding Source: National Science Foundation

Ask authors/readers for more resources

Gadolinium metal-organic framework (Gd MOF) nanoparticles are an interesting and novel class of nanomaterials that are being studied as a potential replacement for small molecule positive contrast agents in magnetic resonance imaging (MRI). Despite the tremendous interest in these nanoscale imaging constructs, there are limitations, particularly with respect to controlling the particle size, which need to be overcome before these nanoparticles can be integrated into in vivo applications. In an effort to control the size, shape, and size distribution of Gd MOF nanopartides, hydrotropes were incorporated into the reverse microemulsion synthesis used to produce these nanoparticles. A study of how hydrotropes influenced the mechanism of formation of reverse micelles offered a great deal of information with respect to the physical properties of the Gd MOF nanoparticles formed. Specifically, this study incorporated the hydrotropes, sodium salicylate (NaSal), 5-methyl salicylic acid, and salicylic acid into the reverse microemulsion. Results demonstrated that addition of each of the hydrotropes into the synthesis of Gd MOFs provided a simple route to control the nanoparticle size as a function of hydrotrope concentration. Specifically, Gd MOF nanoparticles synthesized with NaSal showed the best reduction in size distributions in both length and width with percent relative standard deviations being nearly 50% less than nanoparticles produced via the standard route from the literature. Finally, the effect of the size of the Gd MOF nanoparticles with respect to their MRI relaxation properties was evaluated. Initial results indicated a positive correlation between the surface areas of the Gd MOF nanoparticles with the longitudinal relaxivity in MRI. In particular, Gd MOF nanoparticles with an average size of 82 nm with the addition of NaSal, yielded a longitudinal relaxivity value of 83.9 mM(-1) [Gd3+] sec(-1), one of the highest reported values compared to other Gd-based nanoparticles in the literature to date.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available