4.8 Article

Electron and Phonon Transport in Au Nanoparticle Decorated Graphene Nanoplatelet Nanostructured Paper

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 3, Issue 4, Pages 1325-1332

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am200126x

Keywords

graphene nanoplatelets; polyethyleneimine; Au/graphene nanoplatelet hybrid; annealing; cold compaction

Funding

  1. Army Research Office [W911NF-09-1-0451]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [0922999] Funding Source: National Science Foundation

Ask authors/readers for more resources

Monodispersed Au nanoparticles are synthesized on the surface of exfoliated graphene nanoplatelets (GNP) in the presence of polyethyleneimine (PEI) with microwave assisted heating. A highly structured layered Au/GNP paper with good flexibility and mechanical robustness is prepared by vacuum assisted self-assembly. The thermal and electrical conductivity of the hybrid paper with and without the Au nanoparticles are investigated after different experimental processing conditions including thermal annealing and cold compaction. Annealing effectively decomposes and removes the adsorbed PEI molecules and improves thermal contact between Au/GNP particles, whereas cold compaction reduces porosity and induces stronger alignment of the Au/GNP within the hybrid paper. Both approaches lead to improvement in electrical and thermal conductivity. It is also found that adjacent GNP particles are electrically connected by the Au nanoparticles but thermally disconnected. It is believed that phonons are scattered at the Au/GNP interfaces, whereas electrons can tunnel across this interface, resulting in a separation of electron and phonon transport within this hybrid paper.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available