4.8 Article

Development of Broad-Spectrum Antimicrobial Latex Paint Surfaces Employing Active Amphiphilic Compounds

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 3, Issue 8, Pages 2878-2884

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am2005465

Keywords

self-decontaminating surface; antimicrobial; functional coating; latex coatings; quaternary ammonium salt

Funding

  1. Office of Naval Research (ONR)
  2. Naval Research Laboratory

Ask authors/readers for more resources

With the increase in antibiotic-resistant microbes, the production of self-decontaminating surfaces has become an area of research that has seen a surge of interest in recent years. Such surfaces, when incorporated into commercial products such as children's toys, medical devices and hospital surfaces could reduce the number of infections caused by pathogenic microorganisms. A number of active components for self-decontaminating surfaces have been investigated, including common antibiotics, metal ions, quaternary ammonium salts (QAS), and antimicrobial peptides (AMP). A recent research focus has been development of a wide range of amphiphilic antimicrobial additives that when combined with modern low volatile organic compound (VOC), water-based paints leads to a surface concentration of the active compounds as the coating cures. Herein we report the development of antimicrobial coatings containing a variety of additives, both QAS and AMP that are active against a broadspectrum of potentially pathogenic bacteria (1-7 log kill), as well as enveloped viruses (2-7 log kill) and fungi (1-2 log kill). Additionally, these additives were compatible with water-dispersed acrylate coatings (latex paint) which have a broad range of real world applicability, and remained active for multiple challenges and when exposed to various cleaning scenarios in which they might encounter in real world situations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available