4.8 Article

Solvent-Free Preparation of High-Toughness Epoxy-SWNT Composite Materials

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 3, Issue 5, Pages 1441-1450

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am101260a

Keywords

single-walled carbon nanotubes; epoxy nanocomposites; block copolymer; toughness; impact strength; electrical conductivity

Funding

  1. NRC (Canada)
  2. CSIC (Spain)
  3. Spanish Ministry of Innovation (MICINN)

Ask authors/readers for more resources

Multicomponent nanocomposite materials based on a high-performance epoxy system and single-walled carbon nanotubes (SWNTs) have been prepared. The noncovalent wrapping of nitric acid-treated SWNTs with a PEO-based amphiphilic block copolymer leads to a highly disaggregated filler with a boosted miscibility in the epoxy matrix, allowing its dispersion without organic solvents. Although direct dispersion of acid-treated SWNTs results in modestly improved epoxy matrix mechanical properties, the incorporation of wrapped SWNTs produces a huge increase in toughness (276% improvement at 0.5 wt % loading) and impact strength (193% at 0.5 wt % loading) with no detrimental effect on the elastic properties. A synergistic effect between SWNTs and the block copolymer is revealed on the basis of tensile and impact strength results. Atomic force microscopy has been applied, obtaining stiffness mappings that identify nanostructure features responsible of the dynamic mechanical behavior. The electrical percolation threshold is greatly reduced, from 0.31 to 0.03 wt % SWNTs when block copolymer-wrapped SWNTs are used, and all the measured conductivity values increased up to a maximum of 7 orders of magnitude with respect to the baseline matrix (1 wt % wrapped-SWNTs loading). This approach provides an efficient way to disperse barely dispersible SWNTs without solvents into an epoxy matrix, and to generate substantial improvements with small amounts of SWNTs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available