4.8 Article

Superhydrophobicity of Natural and Artificial Surfaces under Controlled Condensation Conditions

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 3, Issue 4, Pages 1254-1260

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am200061t

Keywords

superhydrophobic; condensation; contact angle; sliding angle; surface temperature; relative humidity

Funding

  1. Nanjing University [0205D100]

Ask authors/readers for more resources

In this paper, we have comparatively investigated the stability of superhydrophobic behaviors of fresh and biomimetic lotus leaf surfaces under controlled water condensation conditions. The binary micro/nano structures of the superhydrophobic surfaces are observed with electron micrographs. Contact and sliding angles are evaluated by syringing water droplets on the substrates with surface temperatures and humidity precisely controlled between -10 and 30 degrees C, and RH = 10, 30, 60, and 90%. According to the calculations on the solid-liquid contact area fraction in different environmental conditions based on a micro/nano binary structure model, the effects of condensed water on superhydrophobic surfaces are assessed quantitatively. Both the calculated and experimental results indicate that the temperature difference between surface temperature and the dew point during measurement is essential to the occurrence of water condensation while the effect of condensation on the surface wettability also depends on the topology of hierarchical structured surfaces. The loss of water repellency that usually appears on the artificial superhydrophobic surface under low temperature and high humidity conditions is proved to be reversible, showing a bidirectional transition of the equilibrium state between Wenzel and Cassie-Baxter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available