4.8 Article

Synthesis of Pt Nanopetals on Highly Ordered Silicon Nanocones for Enhanced Methanol Electrooxidation Activity

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 2, Issue 8, Pages 2231-2237

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am100256g

Keywords

3D/3D nanoarchitecture; Pt nanopetals; methanol oxidation; fuel cells

Ask authors/readers for more resources

Platinum (Pt) nanopetals were electrodeposited on highly ordered silicon nanocones (SiNCs) and explored as the electrocatalyst for methanol oxidation reaction (MOR) for direct methanol fuel cells applications. Highly ordered SiNCs array fabricated using the porous anodic aluminum oxide as the template had a high surface area. Well-dispersed Pt nanopetals possessing high electrocatalytic surface area was synthesized by pulse-electrodeposition on the SiNCs. Pt nanopetals loaded on highly ordered SiNC support exhibited very good catalytic activity for MOR and a high tolerance against CO poisoning, as compared to Pt nanoflowers/flat Si, Pt nanoparticles/flat Si, and many previously reported works. The abundance of a large surface area for facile transport of methanol, SiO2 sites in the vicinity of the SiNCs, as well as less contact area between the Pt nanopetals catalyst and SiNCs are suggested to be the major factors enhancing the electrocatalytic performance of the Pt nanopetal/SiNC electrode. Moreover, we believe this new nanostructure (Pt nanopetals/SiNCs) will enable many new advances in nanotechnology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available