4.8 Article

All-(111) Surface Silicon Nanowires: Selective Functionalization for Biosensing Applications

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 2, Issue 12, Pages 3422-3428

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am100922e

Keywords

silicon; nanowires; Si-C monolayers; biosensing

Funding

  1. Higher Education Commission (HEC)/Government of Pakistan

Ask authors/readers for more resources

We demonstrate the utilization of selective functionalization of carbon-silicon (C-Si) alkyl and alkenyl monolayers covalently linked to all-(111) surface silicon nanowire (Si-NW) biosensors. Terminal amine groups on the functional monolayer surfaces were used for conjugation of biotin n-hydroxysuccinimide ester. The selective functionalization is demonstrated by contact angle, X-ray photoelectron spectroscopy (XPS), and high-resolution scanning electron microscopy (HRSEM) of 5 nm diameter thiolated Au nanoparticles linked with streptavidin and conjugated to the biotinylated all-(111) surface Si-NWs. Electrical measurements of monolayer passivated Si-NWs show improved device behavior and performance. Furthermore, an analytical model is presented to demonstrate the improvement in detection sensitivity of the alkyl and alkenyl passivated all-(111) Si-NW biosensors compared to conventional nanowire biosensor geometries and silicon dioxide passivation layers as well as interface design and electrical biasing guidelines for depletion-mode sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available