4.8 Article

Poly(ethylene glycol)-Based Thiol-ene Hydrogel Coatings-Curing Chemistry, Aqueous Stability, and Potential Marine Antifouling Applications

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 2, Issue 3, Pages 903-912

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am900875g

Keywords

thiol-ene chemistry; photocuring; hydrogels; degradation; antifouling; bioassays

Ask authors/readers for more resources

Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with or without ester linkages. The thiol-methacrylate and thiol-allyl systems were evaluated with respect to curing, degradation, as well as antifouling properties. Moth acrylate-based systems exhibited homopolymerization, whereas allyl-based systems reacted more selectively through thiol-ene couplings reaction. The ester-free hydrogels elucidated higher hydrolytic stability whereas longer PEG chains accelerated the degradation process. The antifouling properties were evaluated by protein adsorption With Bovine serum albumin (BSA) and bioassays with the marine bacteria, Cobetia marina, and the marine diatom, Amphora coffeaeformis; in all tests, longer PEG lengths improved the antifouling properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available