4.8 Article

Fabrication and Photoelectrochemical Characteristics of the Patterned CdS Microarrays on Indium Tin Oxide Substrates

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 2, Issue 12, Pages 3467-3472

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/am100548w

Keywords

cadmium sulfide; thin film; micropattern; photoelectrochemical property

Funding

  1. National Natural Science Foundation of China [50705094, 50972148]
  2. Chinese Academy of Sciences [KGCX2-YW-804]

Ask authors/readers for more resources

In an effort to investigate the extraordinary photoelectrochemical characteristics of nanostructured CdS thin films in promising photovoltaic device applications, the patterned CdS microarrays with different feature sizes (50, 130, and 250 mu m in diameter) were successfully fabricated on indium tin oxide (ITO) glass substrates using the chemical bath deposition method. The ultraviolet lithography process was employed for fabricating patterned octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) as the functional organic thin layer template. The results show that the regular and compact patterned CdS microarrays had been deposited onto ITO glass surfaces, with clear edges demarcating the boundaries between the patterned CdS region and substrate under an optimal depositing condition. The microarrays consisted of pure nanocrystalline CdS with average crystallite size of about 10.7 nm. The photocurrent response and the optical adsorption of the patterned CdS microarray thin films increased with the decrease of the feature size, which was due to the increased CdS surface area, as well as the increased optical path length within the patterned CdS thin films, resulting from multiple reflection of incident light. The resistivity values increase with the increase of feature size, due to the increase of the relative amount of gaps between CdS microarrays with increasing the feature size of patterned CdS microarrays.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available