4.7 Article

Assembling Self-Supporting Structures

Journal

ACM TRANSACTIONS ON GRAPHICS
Volume 33, Issue 6, Pages -

Publisher

ASSOC COMPUTING MACHINERY
DOI: 10.1145/2661229.2661266

Keywords

masonry models; static equilibrium analysis; self-supporting surfaces; optimization; sparsity; assembly order

Funding

  1. SNF Grant [200021-137626]
  2. European Research Council under the European Union's 7th Framework Programme (FP)/ERC [257453]
  3. ERC Starting Grant COSYM
  4. ERC Starting Grant iModel [StG-2012-306877]
  5. European Research Council (ERC) [257453] Funding Source: European Research Council (ERC)
  6. Swiss National Science Foundation (SNF) [200021_137626] Funding Source: Swiss National Science Foundation (SNF)

Ask authors/readers for more resources

Self-supporting structures are prominent in historical and contemporary architecture due to advantageous structural properties and efficient use of material. Computer graphics research has recently contributed new design tools that allow creating and interactively exploring self-supporting freeform designs. However, the physical construction of such freeform structures remains challenging, even on small scales. Current construction processes require extensive form work during assembly, which quickly leads to prohibitively high construction costs for realizations on a building scale. This greatly limits the practical impact of the existing freeform design tools. We propose to replace the commonly used dense formwork with a sparse set of temporary chains. Our method enables gradual construction of the masonry model in stable sections and drastically reduces the material requirements and construction costs. We analyze the input using a variational method to find stable sections, and devise a computationally tractable divide-and-conquer strategy for the combinatorial problem of finding an optimal construction sequence. We validate our method on 3D printed models, demonstrate an application to the restoration of historical models, and create designs of recreational, collaborative self-supporting puzzles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available