4.5 Article

Effect of focusing conditions on laser-induced shock waves at titanium-water interface

Journal

APPLIED OPTICS
Volume 50, Issue 19, Pages 3275-3281

Publisher

Optica Publishing Group
DOI: 10.1364/AO.50.003275

Keywords

-

Categories

Ask authors/readers for more resources

The spatial and temporal evolution of laser-induced shock waves at a titanium-water interface was analyzed using a beam deflection setup. The focusing conditions of the source laser were varied, and its effect onto the dynamics of shock waves was elucidated. For a tightly focused condition, the speed of the shock wave was similar to 6.4 Km/s, whereas for a defocused condition the velocities reduced to <3 km/s at the vicinity of the titanium-water interface. When the laser is focused a few millimeters above the target, i.e., within the water, the emission of dual shock waves was observed toward the rear side of the focal volume. These shock waves originate from the titanium-water interface as well as from the pure water breakdown region, respectively. The shock wave pressure is estimated from the shock wave velocity using the Newton's second law across a shock wave discontinuity. The shock wave pressure for a tightly focused condition was 18 GPa, whereas under a defocused condition the pressure experienced was <= 1 GPa in the proximity of target. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available