4.8 Review

High Performance Photovoltaic Applications Using Solution-Processed Small Molecules

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 46, Issue 11, Pages 2645-2655

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar400088c

Keywords

-

Funding

  1. MOST [2012CB933401, 2011DFB50300]
  2. NSFC [51273093, 50933003]
  3. MOE [PCSIRT IRT1257]
  4. NSF of Tianjin [10ZCGHHZ00600]

Ask authors/readers for more resources

Energy remains a critical issue for the survival and prosperity of human civilization. Many experts believe that the eventual solution for sustainable energy is the use of direct solar energy as the main energy source. Among the options for renewable energy, photovoltaic technologies that harness solar energy offer a way to harness an unlimited resource and minimum environment impact in contrast with other alternatives such as water, nudear, and wind energy. Currently, almost all commercial photovoltaic technologies use Si-based technology, which has a number of disadvantages induding high cost, lack of flexibility, and the serious environmental impact of the Si industry. Other technologies, such as organic photovoltaic (OPV) cells, can overcome some of these issues. Today, polymer-based OPV (P-OPV) devices have achieved power conversion efficiencies (PCEs) that exceed 9%. Compared with P-OPV, small molecules based OPV (SM-OPV) offers further advantages, including a defined structure for more reproducible performance, higher mobility and open circuit voltage, and easier synthetic control that leads to more diversified structures. Therefore, while largely undeveloped, SM-OPV is an important emerging technology with performance comparable to P-OPV. In this Account, we summarize our recent results on solution-processed SM-OPV. We believe that solution processing is essential for taking full advantage of OPV technologies. Our work started with the synthesis of oligothiophene derivatives with an acceptor-donor-acceptor (A-D-A) structure. Both the backbone conjugation length and electron withdrawing terminal groups play an important role in the light absorption, energy levels and performance of the devices. Among those molecules, devices using a 7-thiophene-unit backbone and a 3-ethylrhodanine (RD) terminal unit produced a 6.1% PCE. With the optimized conjugation length and terminal unit, we borrowed from the results with P-OPV devices to optimize the backbone. Thus we selected BDT (benzo[1,2-b:4,5-b']dithiophene) and DTS (dithienosilole) to replace the central thiophene unit, leading to a PCE of 8.12%. In addition to our molecules, Bazan and co-workers have developed another excellent system using DTS as the core unit that has also achieved a PCE greater than 8%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available