4.8 Review

Assembly of Naturally Occurring Glycosides, Evolved Tactics, and Glycosylation Methods

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 45, Issue 8, Pages 1227-1236

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar200296m

Keywords

-

Funding

  1. National Natural Science Foundation of China
  2. Ministry of Science and Technology of China
  3. Chinese Academy of Sciences
  4. E-Institute of Shanghai Municipal Education Commission [E09013]

Ask authors/readers for more resources

Glycosylation of proteins and lipids is critical to many life processes. Secondary metabolites (or natural products), such as flavonoids, steroids, triterpenes, and antibiotics, are also frequently modified with saccharides. The resulting glycosides include diverse structures and functions, and some of them have pharmacological significance. The saccharide portions of the glycosides often have specific structural characteristics that depend on the aglycones. These molecules also form heterogeneous glycoform mixtures where molecules have similar glycosidic linkages but the saccharides vary in the length and type of monosaccharide unit. Thus, It is difficult to purify homogeneous glycosides in appreciable amounts from natural sources. Chemical synthesis provides a feasible access to the homogeneous glycosides and their congeners. Synthesis of a glycoside involves the synthesis of the aglycone, the saccharide, the connection of these two parts, and the overall manipulation of protecting groups. However, most synthetic efforts to date have focused on the aglycones, treating the attachment of saccharides onto the aglycones as a dispensable topic. The synthesis of the aglycone and the synthesis of the saccharide belong to two independent categories of chemistry, and different types of the aglycones and saccharides pose as specific synthetic subjects in their own disciplines. The only reaction that integrates the broad chemistry of glycoside synthesis is the glycosidic bond formation between the saccharide and the aglycone. Focusing on this glycosylation reaction in this Account, we string together our experience with the synthesis of the naturally occurring glycosides. We briefly describe the synthesis of 18 glycosides, including glycolipids, phenolic glycosides, steroid glycosides, and triterpene glycosides. Each molecule represents a prototypical structure of a family of the natural glycosides with interesting biological activities, and we emphasize the general tactics for the synthesis of these diverse structures. We provide a rationale for four tactics for the synthesis of glycosides, based on the stage at which the glycosidic bond is formed between the saccharide and the aglycone. This choice of tactic determines the success or failure of a synthesis, and the flexibility and the overall efficiency of the synthesis as well. Toward the synthesis of heterogeneous glycoform mixtures, we discuss successive and random glycosylation reactions. Finally, we have developed two new glycosylation protocols that address the challenges in the glycosylation of aglycones that are poorly nucleophilic, extremely acid labile, or extremely electrophilic. One of these new protocols takes advantage of glycosyl trifluoroacetimidate donors, and a second protocol uses gold(I)-catalyzed glycosylation with glycosyl ortho-alkynylbenzoate donors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available