4.8 Review

Before and after Endosomal Escape: Roles of Stimuli-Converting siRNA/Polymer Interactions in Determining Gene Silencing Efficiency

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 45, Issue 7, Pages 1077-1088

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar200241v

Keywords

-

Funding

  1. CAREER
  2. National Science Foundation [DMR-0956091]
  3. Gabrielle's Angel Foundation for Cancer Research [056]
  4. National Institutes of Health Research (NIHR) [056] Funding Source: National Institutes of Health Research (NIHR)

Ask authors/readers for more resources

Silencing the expression of a target gene by RNA interference (RNAi) shows promise as a potentially revolutionizing strategy for manipulating biological (pathological) pathways at the translational level. However, the lack of reliable, efficient, versatile, and safe means for the delivery of small interfering RNA (siRNA) molecules, which are large in molecular weight, negatively charged, and subject to degradation, has impeded their use in basic research and therapy. Polyplexes of siRNA and polymers are the predominant mode of siRNA delivery, but innovative synthetic strategies are needed to further evolve them to generate the desired biological and therapeutic effects. This Account focuses on the design of polymeric vehicles for siRNA delivery based on an understanding of the molecular interactions between siRNA and cationic polymers. Ideal siRNA/polymer polyplexes should address an inherent design dilemma for successful gene silencing: (1) Cationic polymers must form tight complexes with siRNA via attractive electrostatic interactions during circulation and cellular internalization and (2) siRNA must dissociate from its cationic carrier in the cytoplasm before they are loaded into RNA-induced silencing complex (RISC) and initiate gene silencing. The physicochemical properties of polymers, which dictate their molecular affinity to siRNA, can be programmed to be altered by intracellular stimuli, such as acidic pH in the endosome and cytosolic reducers, subsequently inducing the siRNA/polymer polyplex to disassemble. Specific design goals include the reduction of the cationic density and the molecular weight, the loss of branched structure, and changes in the hydrophilicity/hydrophobicity of the polymeric siRNA carriers, via acid-responsive degradation and protonation processes within the endosome and glutathione (GSH)-mediated reduction in the cytoplasm, possibly in combination with gradual stimuli-independent hydrolysis. Acetals/ketals are acid-cleavable linkages that have been incorporated into polymeric materials for stimuli-responsive gene and drug delivery. Tailoring the ketalization ratio and the molecular weight of ketalized branched PEI (K-BPEI) offers molecular control of the intracellular trafficking of siRNA/polymer polyplexes and, therefore, the gene silencing efficiency. The ketalization of linear PEI (K-LPEI) enhances gene silencing in vitro and in vivo by improving siRNA complexation with the polymer during circulation and cellular internalization, supplementing proton buffering efficiency of the polymer in the endosome, and facilitating siRNA dissociation from the polymer in the cytoplasm, in a serum-resistant manner. Spermine polymerization via ketalization and esterification for multistep intracellular degradations provides an additional polymeric platform for improved siRNA delivery and highly biocompatible gene silencing. The chemistry presented in this Account will help lay the foundation for the development of Innovative and strategic approaches that advance RNAi technology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available