4.8 Review

Hyperbranched Polyglycerols: From the Controlled Synthesis of Biocompatible Polyether Polyols to Multipurpose Applications

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 43, Issue 1, Pages 129-141

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar900158p

Keywords

-

Funding

  1. DFG
  2. Alexander von Humboldt Foundation
  3. VCI
  4. POLYMAT

Ask authors/readers for more resources

Dendritic macromolecules with random branch-on-branch topology, termed hyperbranched polymers in the late 1980s, have a decided advantage over symmetrical dendrimers by virtue of typically being accessible in a one-step synthesis. Saving this synthetic effort once had an unfortunate consequence, though: hyperbranching polymerization used to result in a broad distribution of molecular weights (that is, very high polydispersities, often M-w/M-n > 5). By contrast, a typical dendrimer synthesis yields a single molecule (in other words, M-w/M-n = 1.0), albeit by a labor-intensive, multistep process. But 10 years ago, Sunder and colleagues reported the controlled synthesis of well-defined hyperbranched polyglycerol (PG) via ring-opening multibranching polymerization (ROMBP) of glycidol. Since then, hyperbranched and polyfunctional polyethers with controlled molar mass and low polydispersities (M-w/M-n, = 1.2-1.9) have been prepared, through various monomer addition protocols, by ROMBP. In this Account we review the progress in the preparation and application of these uniquely versatile polyether polyols over the past decade. Hyperbranched PGs combine several remarkable features, including a highly flexible aliphatic polyether backbone, multiple hydrophilic groups, and excellent biocompatibility. Within the past decade, intense efforts have been directed at the optimization of synthetic procedures affording PG homo- and copolymers with different molecular weight characteristics and topology. Fundamental parameters of hyperbranched polymers include molar mass, polydispersity, degree of branching, and end-group functionality. Selected approaches for optimizing and tailoring these characteristics are presented and classified with respect to their application potential. Specific functionalization in the core and at the periphery of hyperbranched PG has been pursued to meet the growing demand for novel specialty materials in academia and industry. A variety of fascinating synthetic approaches now provide access to well-defined, complex macromolecular architectures based on polyether polyols with low polydispersity. For instance, a variety of linear-hyperbranched block copolymers has been reported. The inherent attributes of PG-based materials are useful for a number of individual implementation concepts, such as drug encapsulation or surface modification. The excellent biocompatibility of PG has also led to rapidly growing significance in biomedical applications, for example, bioconjugation with peptides, as well as surface attachment for the creation of protein-resistant surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available