4.8 Review

Are Short, Low-Barrier Hydrogen Bonds Unusually Strong?

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 43, Issue 12, Pages 1550-1557

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar100097j

Keywords

-

Funding

  1. NSF [CHE07-42801]

Ask authors/readers for more resources

In a symmetric hydrogen bond (H-bond), the hydrogen atom is perfectly centered between the two donor atoms. The energy diagram for hydrogen motion is thus a single-well potential, rather than the double-well potential of a more typical H-bond, in which the hydrogen is covalently bonded to one atom and H-bonded to the other. Examples of symmetric H-bonds are often found in crystal structures, and they exhibit the distinctive feature of unusually short length: for example, the O-O distance in symmetric OHO H-bonds is found to be less than 2.5 angstrom. In comparison, the O-O distance in a typical asymmetric H-bond, such as ROH center dot center dot center dot OR2, ranges from about 2.7 to 3.0 angstrom. In this Account, we briefly review and update our use of the method of isotopic perturbation to search for a symmetric, centered, or single-well-potential H-bond in solution. Such low-barrier H-bonds are thought to be unusually strong, owing perhaps to the resonance stabilization of two identical resonance forms [A-H center dot center dot center dot B <-> A center dot center dot center dot H-B]. This presumptive bond strength has been invoked to explain some enzyme-catalyzed reactions. Yet in solution, a wide variety of OHO, OHN, and NHN H-bonds have all been found to be asymmetric, in double-well potentials. Examples include the monoanion of (+/-)-2,3-di-tert-butylsuccinic acid and a protonated tetramethylnaphthalenediamine, even though these two ions are often considered prototypes of species with strong H-bonds. In fact, all of the purported examples of strong, symmetric H-bonds have been found to exist in solution as pairs of asymmetric tautomers, in contrast to their symmetry in some crystals. The asymmetry can be attributed to the disorder of the local solvation environment, which leads to an equilibrium among solvatomers (that is, isomers that differ in solvation). If the disorder of the local environment is sufficient to break symmetry, then symmetry itself is not sufficient to stabilize the H-bond, and symmetric H-bonds do not have an enhanced stability or an unusual strength. Nor are short H-bonds unusually strong. We discuss previous evidence for short, strong, low-barrier H-bonds and show it to be based on ambiguous comparisons. The role of such H-bonds in enzyme-catalyzed reactions is then ascribed not to any unusual strength of the H-bond itself but to relief of strain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available