4.8 Review

Polymer Brushes: Routes toward Mechanosensitive Surfaces

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 43, Issue 3, Pages 466-474

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar900237r

Keywords

-

Funding

  1. Engineering and Physical Sciences Research Council (EPSRC)
  2. Humboldt Foundation
  3. German Research Foundation (DFG)

Ask authors/readers for more resources

Soft nanotechnology involves both understanding the behavior of soft matter and using these components to build useful nanoscale structures and devices. However, molecular scale properties such as Brownian motion, diffusion, surface forces, and conformational flexibility dominate the chemistry and physics in soft nanotechnology, and therefore the design rules for generating functional structures from soft, self-assembled materials are still developing. Biological motors illustrate how wet nanoscale machines differ from their macroscopic Counterparts. These molecular machines convert chemical energy into mechanical motion through an isothermal process: chemical reactions generate chemical potential and diffusion of ions, leading to conformational changes in proteins and the production of mechanical force. Because the actuation steps form a thermodynamic cycle that is reversible, the application of mechanical forces can also generate a chemical potential. This reverse process of mechanotransduction is the underlying sensing and signaling mechanism for a wide range of physiological phenomena such as hearing, touch, and growth of bone. Many of the biological systems that respond to mechanical stimuli do this via complex stress-activated ion channels or remodeling of the actin cytoskeleton. These biological actuation and mechanosensing processes are rather different from nano- and microelectromechanical systems (NEMS and MEMS) produced via semiconductor fabrication technologies. In our group, we are working to emulate biological mechanotransduction by systematically developing building blocks based on polymer brushes. In this soft nanotechnology approach to mechanotransduction, the chemical building blocks are polymer chains whose conformational changes and actuation can be investigated at a very basic level in polymer brushes, particularly polyelectrolyte brushes. Because these polymer brushes are easily accessible synthetically with control over parameters such as composition, chain length, and chain density, brushes provide a robust platform to study the coupling of mechanical forces with conformational changes of the chains. This Account provides an overview of our recent research in the design of mechanosensitive polymer brushes starting with the demonstration of nanoactuators and leading to our first attempts toward the creation of artificial mechanotransduction elements. As the brushes collapse in response to external triggers such as pH and ion concentration, polyelectrolyte brushes provide stimuli-responsive films. These collapse transitions lead to the generation of mechanical forces, and by reversing the chain of events, we designed a mechanically responsive film with a chemical output. Having reported an initial proof-of-principle experiment, we think that the stage is set for the preparation of more elaborate mechanosensitive surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available