4.8 Review

Iodine/Iodide-Free Dye-Sensitized Solar Cells

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 42, Issue 11, Pages 1827-1838

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar900069p

Keywords

-

Funding

  1. ministry of Economy, Trade and Industry in Japan [20750150]
  2. NSFC [20774703, 5062351, U0634004, 2006CB806200, 2006CB93100]
  3. Grants-in-Aid for Scientific Research [20750150] Funding Source: KAKEN

Ask authors/readers for more resources

Dye-sensitized solar cells (DSSCs) are built from nanocrystalline anatase TiO2 with a 101 crystal face (nc-TiO2) onto which a dye is absorbed, ruthenium complex sensitizers, fluid I-/I-3(-) redox couples with electrolytes, and a Pt-coated counter electrode. DSSCs have now reached efficiencies as high as 11%, and G24 Innovation (Cardiff, U.K.) is currently manufacturing them for commercial use. These devices offer several distinct advantages. On the basis of the electron lifetime and diffusion coefficient in the nc-TiO2 layer, DSSCs maintain a diffusion length on the order of several micrometers when the dyed-nc-TiO2 porous layer is covered by redox electrolytes of lithium and/or imidazolium iodide and their polyiodide salts. The fluid iodide/iodine (I-/I-3(-)) redox electrolytes can infiltrate deep inside the intertwined nc-TiO2 layers, promoting the mobility of the nc-TiO2 layers and serving as a hole-transport material of DSSCs. As a result, these materials eventually give a respectable photovoltaic performance. On the other hand, fluid I-/I-3(-) redox shuttles have certain disadvantages: reduced performance control and long-term stability and incompatibility with some metallic component materials. The I-/I-3(-) redox shuttle shows a significant loss in short circuit current density and a slight loss in open circuit voltage, particularly in highly viscous electrolyte-based DSSC systems. Iodine can also act as an oxidizing agent, corroding metals, such as the grid metal Ag and the Pt mediator on the cathode, especially in the presence of water and oxygen. In addition, the electrolytes (I-/I-3(-)) can absorb visible light (lambda = similar to 430 nm), leading to photocurrent loss in the DSSC. Therefore, the introduction of iodide/iodine-free electrolytes or hole-transport materials (HTMs) could lead to cost-effective alternatives to TiO2 DSSCs. In this Account, we discuss the iodide/iodine-free redox couple as a substitute for the fluid I-/I(3)(-)redox shuttle. We also review the adaptation of solid-state HTMs to the iodide/iodine-free solid-state DSSCs with an emphasis on their pore filling and charge mobility in devices and the relationship of those values to the performance of the resulting iodide/iodine-free DSSCs. We demonstrate how the structures of the sensitizing dye molecules and additives of lithium or imidazolium salts influence device performance. In addition, the self-organizing molecular interaction for electronic contact of HTMs to dye molecules plays an important role in unidirectional charge diffusion at interfaces. The poly(3,4-ethylenedioxythiophene) (PEDOT)-based DSSCs, which we obtain through photoelectrochemical polymerization (PEP) using 3-alkylthiophen-bearing ruthenium dye, HRS-1, and bis-EDOT, demonstrates the importance of nonbonding interface contact (e.g., pi-pi(-) stacking) for the successful inclusion of HTMs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available