4.8 Review

Laser Fabrication and Spectroscopy of Organic Nanoparticles

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 41, Issue 12, Pages 1790-1798

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar800125s

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports Science and Technology of Japan (MEXT) [19049011]
  2. Japan Society for the Promotion of Science (JSPS) [20043040, 20550736, 18106002]
  3. Ministry of Education, Taiwan
  4. National Science Council Taiwan [0970027441]
  5. Grants-in-Aid for Scientific Research [20043040] Funding Source: KAKEN

Ask authors/readers for more resources

In working with nanoparticles, researchers still face two fundamental challenges: how to fabricate the nanoparticles with controlled size and shape and how to characterize them. In this Account, we describe recent advances in laser technology both for the synthesis of organic nanoparticles and for their analysis by single nanoparticle spectroscopy. Laser ablation of organic microcrystalline powders in a poor solvent has opened new horizons for the synthesis of nanoparticles because the powder sample is converted directly into a stable colloidal solution without additives and chemicals. By tuning laser wavelength, pulse width, laser fluence, and total shot number, we could control the size and phase of the nanoparticles. For example, we describe nanoparticle formation of quinacridone, a well-known red pigment, in water. By modifying the length of time that the sample is excited by the laser, we could control the particle size (30-120 nm) for nanosecond excitation down to 13 nm for femtosecond irradiation. We prepared beta- and gamma-phase nanoparticles from the microcrystal with beta-phase by changing laser wavelength and fluence. We present further results from nanciparticles produced from several dyes, C-60, and an anticancer drug. All the prepared colloidal solutions were transparent and highly dispersive. Such materials could be used for nanoscale device development and for biomedical and environmental applications. We also demonstrated the utility of single nanoparticle spectroscopic analysis in the characterization of organic nanoparticles. The optical properties of these organic nanoparticles depend on their size within the range from a few tens to a few hundred nanometers. We observed perylene nanoscrystals using single-particle spectroscopy coupled with atomic force microscopy. Based on these experiments, we proposed empirical equations explaining their size-dependent fluorescence spectra. We attribute the size effect to the change in elastic properties of the nanocrystal. Based on the results for nanoparticles of polymers and other molecules with flexible conformations, we assert that size-dependent optical properties are common for organic nanoparticles. While electronic confinement explains the size-dependent properties of inorganic nanoparticles, we propose structural confinement as an analogous paradigm for organic nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available