4.8 Review

Poly(2,7-carbazole)s: Structure-property relationships

Journal

ACCOUNTS OF CHEMICAL RESEARCH
Volume 41, Issue 9, Pages 1110-1119

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ar800057k

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Research Chair Program

Ask authors/readers for more resources

Conjugated polymers combine the interesting optical and electrical properties of metals with the processing advantages and mechanical properties of traditional synthetic polymers. With clever use of a variety of synthetic tools, researchers have prepared highly pure polymers with optimized physical properties during the past 30 years. For example, the synthesis of well-defined polyacetylenes, polyphenylenes, polythiophenes, polyfluorenes, and other conjugated polymers have significantly improved the performance of these polymeric materials. However, one important class of conjugated polymers was missing from this chemical inventory: easy access to well-defined poly(2,7-carbazole)s and related polymers. This Account highlights advances in the synthesis of poly(2,7-carbazole) derivatives since they were first reported in 2001. Starting from 2-nitro-biphenyl derivatives, 2,7-functionalized carbazoles are typically obtained from Cadogan ring-closure reactions. In a second step, Yamamoto, Stille, Suzuki, or Horner-Emmons coupling polymerization leads to various poly (2,7-carbazole) derivatives. We discuss the characterization of their optical and electrical properties with a strong emphasis on the structure-property relationships. In addition, we carefully evaluate these polymers as active components in light-emitting diodes, transistors, and photovoltaic cells. In particular, several low band gap poly(2,7-carbazole) derivatives have revealed highly promising features for solar cell applications with hole mobilities of about 3 x 10(-3) cm(2) V-1 s(-1) and power conversion efficiencies up to 4.8%. Finally, we show how these new synthetic strategies have led to the preparation of novel poly(heterofluorene) derivatives and ladder-type conjugated polymers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available