4.6 Article

TargetHunter: An In Silico Target Identification Tool for Predicting Therapeutic Potential of Small Organic Molecules Based on Chemogenomic Database

Journal

AAPS JOURNAL
Volume 15, Issue 2, Pages 395-406

Publisher

SPRINGER
DOI: 10.1208/s12248-012-9449-z

Keywords

ChEMBL; chemogenomics; machine learning; target identification; TargetHunter

Funding

  1. NIH [NIH R01DA025612, NIGMS P50-GM067082, NIH R21HL109654]
  2. National Natural Science Foundation of China [NSFC 81090410, NSFC 90913018]

Ask authors/readers for more resources

Target identification of the known bioactive compounds and novel synthetic analogs is a very important research field in medicinal chemistry, biochemistry, and pharmacology. It is also a challenging and costly step towards chemical biology and phenotypic screening. In silico identification of potential biological targets for chemical compounds offers an alternative avenue for the exploration of ligand-target interactions and biochemical mechanisms, as well as for investigation of drug repurposing. Computational target fishing mines biologically annotated chemical databases and then maps compound structures into chemogenomical space in order to predict the biological targets. We summarize the recent advances and applications in computational target fishing, such as chemical similarity searching, data mining/machine learning, panel docking, and the bioactivity spectral analysis for target identification. We then described in detail a new web-based target prediction tool, TargetHunter (http://www.cbligand.org). This web portal implements a novel in silico target prediction algorithm, the Targets Associated with its MOst SImilar Counterparts, by exploring the largest chemogenomical databases, ChEMBL. Prediction accuracy reached 91.1% from the top 3 guesses on a subset of high-potency compounds from the ChEMBL database, which outperformed a published algorithm, multiple-category models. TargetHunter also features an embedded geography tool, BioassayGeoMap, developed to allow the user easily to search for potential collaborators that can experimentally validate the predicted biological target(s) or off target(s). TargetHunter therefore provides a promising alternative to bridge the knowledge gap between biology and chemistry, and significantly boost the productivity of chemogenomics researchers for in silico drug design and discovery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available