4.5 Article

Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide

Journal

FRONTIERS IN MATERIALS
Volume 5, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fmats.2018.00008

Keywords

phononic crystals and metamaterials; Lamb band gap; guided waves; finite element simulations; scanning laser Doppler vibrometer

Funding

  1. European Union's Horizon research and innovation programme under the Marie Skodowska-Curie [658483]
  2. European Commission [696656]
  3. LET Proactive Neurofibres [732344]
  4. Progetto d'Ateneo/Fondazione San Paolo Metapp [CSTO160004]

Ask authors/readers for more resources

The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stiffnesses produced by cavities in a monolithic material. The performance of the designed structure is evaluated by numerical simulations and confirmed by scanning laser Doppler vibrometer (SLDV) measurements on an isotropic polyvinyl chloride plate in which a square ring region of cross-like cavities is fabricated. The full wave field reconstruction clearly confirms the ability of even a limited number of unit cell rows of the proposed design to efficiently attenuate Lamb waves. In addition, numerical simulations show that the structure allows to shift the central frequency of the BG through geometrical modifications. The design may be of interest for applications in which large BGs at low frequencies are required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available