4.7 Article

Control of Velocity-Constrained Stepper Motor-Driven Hilare Robot for Waypoint Navigation

Journal

ENGINEERING
Volume 4, Issue 4, Pages 491-499

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.eng.2018.07.013

Keywords

Trajectory tracking; Adaptive control; Waypoint navigation; Hilare robot; Particle swarm optimization; Probabilistic road map

Ask authors/readers for more resources

Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories. (C) 2018 THE AUTHORS. Published by Elsevier LTD on behalf of Chinese Academy of Engineering and Higher Education Press Limited Company. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available